Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Antimicrob Chemother ; 79(1): 123-127, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37970680

RESUMO

BACKGROUND: Molecular diagnostic tests may improve antibiotic prescribing by enabling earlier tailoring of antimicrobial therapy. However, clinicians' trust and acceptance of these tests will determine their application in practice. OBJECTIVES: To examine ICU prescribers' views on the application of molecular diagnostics in patients with suspected hospital-acquired and ventilator-associated pneumonia (HAP/VAP). METHODS: Sixty-three ICU clinicians from five UK hospitals completed a cross-sectional questionnaire between May 2020 and July 2020 assessing attitudes towards using molecular diagnostics to inform initial agent choice and to help stop broad-spectrum antibiotics early. RESULTS: Attitudes towards using molecular diagnostics to inform initial treatment choices and to stop broad-spectrum antibiotics early were nuanced. Most (83%) were positive about molecular diagnostics, agreeing that using results to inform broad-spectrum antibiotic prescribing is good practice. However, many (58%) believed sick patients are often too unstable to risk stopping broad-spectrum antibiotics based on a negative result. CONCLUSIONS: Positive attitudes towards the application of molecular diagnostics to improve antibiotic stewardship were juxtapositioned against the perceived need to initiate and maintain broad-spectrum antibiotics to protect unstable patients.


Assuntos
Antibacterianos , Pneumonia Associada à Ventilação Mecânica , Humanos , Antibacterianos/uso terapêutico , Patologia Molecular , Estudos Transversais , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Unidades de Terapia Intensiva , Reino Unido
3.
Curr Opin Pulm Med ; 29(3): 168-173, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917219

RESUMO

PURPOSE OF REVIEW: Pulmonary infections due to Gram-negative organisms are increasing worldwide and traditional assumptions that these are limited to hospital and ventilator-acquired pneumonia are rapidly falling away. Accordingly, empiric antibiotic guidelines have to follow suit with ever broader spectrum choices in order to remain 'safe', as the Global prevalence of extensively resistant Gram-negative organisms inexorably increases. Rapid, multiplex PCR-based detection of a wide variety of potential pathogens offers the opportunity to replace empiric antibiotic choices with targeted, evidence-based therapy in clinically actionable timeframes. RECENT FINDINGS: Here, we describe the data underpinning both the increasing global prevalence of Gram-negative pulmonary infections and their increasing antibiotic resistance. We also describe the performance, characteristics and early emerging clinical impact of already available rapid molecular diagnostic platforms and how they might best be deployed. SUMMARY: It will likely be advantageous to replace the current trend for empiric prescription of increasingly broad-spectrum antibiotics with 'same day' evidence-based, targeted therapy using high performance, rapid molecular diagnostic solutions. Several challenges remain be overcome, however, to fully realize their clear potential for better, focussed deployment of antibiotics, improved patient outcomes and antibiotic stewardship.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Infecções por Bactérias Gram-Negativas , Pneumonia , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/epidemiologia , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Pneumonia/epidemiologia
5.
Thorax ; 77(12): 1220-1228, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35027473

RESUMO

BACKGROUND: Culture-based microbiological investigation of hospital-acquired or ventilator-associated pneumonia (HAP or VAP) is insensitive, with aetiological agents often unidentified. This can lead to excess antimicrobial treatment of patients with susceptible pathogens, while those with resistant bacteria are treated inadequately for prolonged periods. Using PCR to seek pathogens and their resistance genes directly from clinical samples may improve therapy and stewardship. METHODS: Surplus routine lower respiratory tract samples were collected from intensive care unit patients about to receive new or changed antibiotics for hospital-onset lower respiratory tract infections at 15 UK hospitals. Testing was performed using the BioFire FilmArray Pneumonia Panel (bioMérieux) and Unyvero Pneumonia Panel (Curetis). Concordance analysis compared machine and routine microbiology results, while Bayesian latent class (BLC) analysis estimated the sensitivity and specificity of each test, incorporating information from both PCR panels and routine microbiology. FINDINGS: In 652 eligible samples; PCR identified pathogens in considerably more samples compared with routine microbiology: 60.4% and 74.2% for Unyvero and FilmArray respectively vs 44.2% by routine microbiology. PCR tests also detected more pathogens per sample than routine microbiology. For common HAP/VAP pathogens, FilmArray had sensitivity of 91.7%-100.0% and specificity of 87.5%-99.5%; Unyvero had sensitivity of 50.0%-100.0%%, and specificity of 89.4%-99.0%. BLC analysis indicated that, compared with PCR, routine microbiology had low sensitivity, ranging from 27.0% to 69.4%. INTERPRETATION: Conventional and BLC analysis demonstrated that both platforms performed similarly and were considerably more sensitive than routine microbiology, detecting potential pathogens in patient samples reported as culture negative. The increased sensitivity of detection realised by PCR offers potential for improved antimicrobial prescribing.


Assuntos
Infecção Hospitalar , Pneumonia Associada à Ventilação Mecânica , Pneumonia , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/microbiologia , Teorema de Bayes , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/microbiologia , Unidades de Terapia Intensiva , Antibacterianos/uso terapêutico , Reino Unido , Pneumonia/diagnóstico
6.
BMJ Qual Saf ; 31(3): 199-210, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34099497

RESUMO

BACKGROUND: Antibiotics are extensively prescribed in intensive care units (ICUs), yet little is known about how antibiotic-related decisions are made in this setting. We explored how beliefs, perceptions and contextual factors influenced ICU clinicians' antibiotic prescribing. METHODS: We conducted 4 focus groups and 34 semistructured interviews with clinicians involved in antibiotic prescribing in four English ICUs. Focus groups explored factors influencing prescribing, whereas interviews examined decision-making processes using two clinical vignettes. Data were analysed using thematic analysis, applying the Necessity Concerns Framework. RESULTS: Clinicians' antibiotic decisions were influenced by their judgement of the necessity for prescribing/not prescribing, relative to their concerns about potential adverse consequences. Antibiotic necessity perceptions were strongly influenced by beliefs that antibiotics would protect patients from deterioration and themselves from the ethical and legal consequences of undertreatment. Clinicians also reported concerns about prescribing antibiotics. These generally centred on antimicrobial resistance; however, protecting the individual patient was prioritised over these societal concerns. Few participants identified antibiotic toxicity concerns as a key influencer. Clinical uncertainty often complicated balancing antibiotic necessity against concerns. Decisions to start or continue antibiotics often represented 'erring on the side of caution' as a protective response in uncertainty. This approach was reinforced by previous experiences of negative consequences ('being burnt') which motivated prescribing 'just in case' of an infection. Prescribing decisions were also context-dependent, exemplified by a lower perceived threshold to prescribe antibiotics out-of-hours, input from external team members and local prescribing norms. CONCLUSION: Efforts to improve antibiotic stewardship should consider clinicians' desire to protect with a prescription. Rapid molecular microbiology, with appropriate communication, may diminish clinicians' fears of not prescribing or of using narrower-spectrum antibiotics.


Assuntos
Antibacterianos , Tomada de Decisão Clínica , Antibacterianos/uso terapêutico , Atitude do Pessoal de Saúde , Humanos , Unidades de Terapia Intensiva , Padrões de Prática Médica , Incerteza
7.
J Investig Med ; 70(1): 61-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611034

RESUMO

Long COVID is characterized by the emergence of multiple debilitating symptoms following SARS-CoV-2 infection. Its etiology is unclear and it often follows a mild acute illness. Anecdotal reports of gradual clinical responses to histamine receptor antagonists (HRAs) suggest a histamine-dependent mechanism that is distinct from anaphylaxis, possibly mediated by T cells, which are also regulated by histamine. T cell perturbations have been previously reported in post-viral syndromes, but the T cell landscape in patients who have recovered from mild COVID-19 and its relationship to both long COVID symptoms and any symptomatic response to HRA remain underexplored. We addressed these questions in an observational study of 65 individuals who had recovered from mild COVID-19. Participants were surveyed between 87 and 408 days after the onset of acute symptoms; none had required hospitalization, 16 had recovered uneventfully, and 49 had developed long COVID. Symptoms were quantified using a structured questionnaire and T cell subsets enumerated in a standard diagnostic assay. Patients with long-COVID had reduced CD4+ and CD8+ effector memory (EM) cell numbers and increased PD-1 (programmed cell death protein 1) expression on central memory (CM) cells, whereas the asymptomatic participants had reduced CD8+ EM cells only and increased CD28 expression on CM cells. 72% of patients with long COVID who received HRA reported clinical improvement, although T cell profiling did not clearly distinguish those who responded to HRA. This study demonstrates that T cell perturbations persist for several months after mild COVID-19 and are associated with long COVID symptoms.


Assuntos
COVID-19/complicações , COVID-19/imunologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Linfócitos T , Adulto , Idoso , COVID-19/diagnóstico , Feminino , Histamina , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto Jovem , Síndrome de COVID-19 Pós-Aguda
8.
Trials ; 22(1): 680, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620213

RESUMO

BACKGROUND: Hospital-acquired and ventilator-associated pneumonias (HAP and VAP) are common in critical care and can be life-threatening. Rapid microbiological diagnostics, linked to an algorithm to translate their results into antibiotic choices, could simultaneously improve patient outcomes and antimicrobial stewardship. METHODS: The INHALE Randomised Controlled Trial is a multi-centre, parallel study exploring the potential of the BioFire FilmArray molecular diagnostic to guide antibiotic treatment of HAP/VAP in intensive care units (ICU); it identifies pathogens and key antibiotic resistance in around 90 min. The comparator is standard care whereby the patient receives empirical antibiotics until microbiological culture results become available, typically after 48-72 h. Adult and paediatric ICU patients are eligible if they are about to receive antibiotics for a suspected lower respiratory infection (including HAP/VAP) for the first time or a change in antibiotic because of a deteriorating clinical condition. Breathing spontaneously or intubated, they must have been hospitalised for 48 h or more. Patients are randomised 1:1 to receive either antibiotics guided by the FilmArray molecular diagnostic and its trial-based prescribing algorithm or standard care, meaning empirical antibiotics based on local policy, adapted subsequently based upon local microbiology culture results. Co-primary outcomes are (i) non-inferiority in clinical cure of pneumonia at 14 days post-randomisation and (ii) superiority in antimicrobial stewardship at 24 h post-randomisation (defined as % of patients on active and proportionate antibiotics). Secondary outcomes include further stewardship reviews; length of ICU stay; co-morbidity indicators, including septic shock, change in sequential organ failure assessment scores, and secondary pneumonias; ventilator-free days; adverse events over 21 days; all-cause mortality; and total antibiotic usage. Both cost-effectiveness of the molecular diagnostic-guided therapy and behavioural aspects determining antibiotic prescribing are being explored. A sample size of 552 will be required to detect clinically significant results with 90% power and 5% significance for the co-primary outcomes. DISCUSSION: This trial will test whether the potential merits of rapid molecular diagnostics for pathogen and resistance detection in HAP/VAP are realised in patient outcomes and/or improved antibiotic stewardship. TRIAL REGISTRATION: ISRCTN Registry ISRCTN16483855 . Retrospectively registered on 15 July 2019.


Assuntos
Gestão de Antimicrobianos , Pneumonia Associada à Ventilação Mecânica , Adulto , Criança , Cuidados Críticos , Hospitais , Humanos , Estudos Multicêntricos como Assunto , Patologia Molecular , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Reino Unido
9.
J Glob Antimicrob Resist ; 27: 1-11, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34329792

RESUMO

OBJECTIVES: The prevalence of Gram-negative bacteria (GNB) demonstrating extensive, multiple antimicrobial resistance is increasing in England, leaving few treatment choices. Cefiderocol is a novel siderophore cephalosporin approved in Europe for the treatment of aerobic GNB infections in adults with limited treatment options. We report pooled data for a clinical isolate set collected in England between 2014-2018. METHODS: MICs were determined by broth microdilution according to International Organization for Standardization guidelines. Cefiderocol susceptibility was tested using iron-depleted cation-adjusted Muller-Hinton broth. Susceptibility rates were based on EUCAST breakpoints. In the absence of a species-specific breakpoint, pharmacokinetic/pharmacodynamic breakpoints were used. RESULTS: Of 1886 isolates from England [74.1% Enterobacterales (18.7% Escherichia coli, 17.2% Klebsiella pneumoniae), 25.9% non-fermenters (18.4% Pseudomonas aeruginosa, 3.7% Acinetobacter baumannii)], 98.7% were cefiderocol-susceptible. Cefiderocol susceptibility in Enterobacterales (99.0%) was significantly (P < 0.01) greater than ceftolozane/tazobactam (94.3%), but similar to meropenem (99.3%) and ceftazidime/avibactam (99.4%). Overall, cefiderocol susceptibility (98.0%) in non-fermenters was significantly (P < 0.01) higher than comparators (range, 84.5-92.4%). Susceptibility to cefiderocol was 98.3-99.6% by infection source and was significantly (P < 0.01) greater than comparators for isolates from patients with nosocomial pneumonia (cefiderocol, 98.3%; comparators range, 79.8-93.8%). Excluding intrinsically meropenem-resistant Stenotrophomonas maltophilia, 47/1846 isolates (2.5%) were meropenem-resistant. A high proportion of meropenem-resistant P. aeruginosa were susceptible to cefiderocol (95.0%). All S. maltophilia isolates (40/40) were cefiderocol-susceptible. CONCLUSION: A substantial proportion of clinical isolates from England, representing a wide range of pathogens across multiple infection sources, was cefiderocol-susceptible. Cefiderocol retained activity against meropenem-resistant strains.


Assuntos
Antibacterianos , Cefalosporinas , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Bactérias Gram-Negativas , Humanos , Testes de Sensibilidade Microbiana , Cefiderocol
10.
Antimicrob Resist Infect Control ; 10(1): 95, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187563

RESUMO

BACKGROUND: Rapid molecular diagnostic tests to investigate the microbial aetiology of pneumonias may improve treatment and antimicrobial stewardship in intensive care units (ICUs). Clinicians' endorsement and uptake of these tests is crucial to maximise engagement; however, adoption may be impeded if users harbour unaddressed concerns or if device usage is incompatible with local practice. Accordingly, we strove to identify ICU clinicians' beliefs about molecular diagnostic tests for pneumonias before implementation at the point-of-care. METHODS: We conducted semi-structured interviews with 35 critical care doctors working in four ICUs in the United Kingdom. A clinical vignette depicting a fictitious patient with signs of pneumonia was used to explore clinicians' beliefs about the importance of molecular diagnostics and their concerns. Data were analysed thematically. RESULTS: Clinicians' beliefs about molecular tests could be grouped into two categories: perceived potential of molecular diagnostics to improve antibiotic prescribing (Molecular Diagnostic Necessity) and concerns about how the test results could be implemented into practice (Molecular Diagnostic Concerns). Molecular Diagnostic Necessity stemmed from beliefs that positive results would facilitate targeted antimicrobial therapy; that negative results would signal the absence of a pathogen, and consequently that having the molecular diagnostic results would bolster clinicians' prescribing confidence. Molecular Diagnostic Concerns included unfamiliarity with the device's capabilities, worry that it would detect non-pathogenic bacteria, uncertainty whether it would fail to detect pathogens, and discomfort with withholding antibiotics until receiving molecular test results. CONCLUSIONS: Clinicians believed rapid molecular diagnostics for pneumonias were potentially important and were open to using them; however, they harboured concerns about the tests' capabilities and integration into clinical practice. Implementation strategies should bolster users' necessity beliefs while reducing their concerns; this can be accomplished by publicising the tests' purpose and benefits, identifying and addressing clinicians' misconceptions, establishing a trial period for first-hand familiarisation, and emphasising that, with a swift (e.g., 60-90 min) test, antibiotics can be started and refined after molecular diagnostic results become available.


Assuntos
Gestão de Antimicrobianos , Atitude do Pessoal de Saúde , Técnicas de Diagnóstico Molecular , Antibacterianos/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Pesquisa Qualitativa , Reino Unido
11.
Int J Infect Dis ; 99: 381-385, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32771640

RESUMO

BACKGROUND: The reasons why some patients with COVID-19 develop pneumonia and others do not are unclear. To better understand this, we used multiparameter flow cytometry to profile circulating leukocytes from non-immunocompromised adult patients with PCR-proven COVID-19 and specifically compared those with mild symptoms with those who had developed pneumonia. METHODS: Using clinically validated antibody panels we studied leukocytes from 29 patients with PCR-proven COVID-19. Ten were hypoxic requiring ventilatory support, eleven were febrile but otherwise well, and eight were convalescing having previously required ventilatory support. Additionally, we analysed patients who did not have COVID-19 but received ventilatory support for other reasons. We examined routine Full Blood Count (FBC) specimens that were surplus to routine diagnostic requirements; normal ranges were established in a historic group of healthy volunteers. FINDINGS: We observed striking and unexpected differences in cells of the innate immune system. Levels of CD11b and CD18, which together comprise Complement Receptor 3 (CR3), were increased in granulocytes and monocytes from hypoxic COVID-19 patients, but not in those with COVID-19 who remained well, or in those without COVID-19 but ventilated for other reasons. Granulocyte and monocyte numbers were unchanged, however Natural Killer (NK) cell numbers were two-fold higher than normal in COVID-19 patients who remained well. INTERPRETATION: CR3 is central to leukocyte activation and subsequent cytokine release in response to infection. It is also a fibrinogen receptor, and its over-expression in granulocytes and monocytes of patients with respiratory failure tables it as a candidate effector of both the thrombotic and inflammatory features of COVID-19 pneumonia, and both a biomarker of impending respiratory failure and potential therapeutic target. NK cells are innate immune cells that retain immunological memory. Rapid expansion of memory NK cells targeting common antigens shared with other Coronaviruses may explain why most patients with COVID-19 do not develop respiratory complications. Understanding the innate immune response to SARS-CoV-may uncover why most infected individuals experience mild symptoms, and inform a preventive approach to COVID-19 pneumonia in the future.


Assuntos
Infecções por Coronavirus/diagnóstico , Granulócitos/metabolismo , Monócitos/metabolismo , Pneumonia Viral/diagnóstico , Adulto , Betacoronavirus , Antígeno CD11b/metabolismo , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Humanos , Imunidade Inata , Memória Imunológica , Células Matadoras Naturais/imunologia , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , SARS-CoV-2
12.
ACS Pharmacol Transl Sci ; 3(3): 401-417, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32551433

RESUMO

This is a narrative review on the potential of rapid and point-of-care microbiological testing in pneumonia patients, focusing particularly on hospital-acquired and ventilator-associated pneumonia, which have substantial mortality and diverse microbiology. This work is written from a United Kingdom perspective, but much of it is generalizable internationally. In a world where antimicrobial resistance is a major international threat, the use of rapid molecular diagnostics has great potential to improve both the management of pneumonia patients and the stewardship of antibiotics. Rapid tests potentially can distinguish patients with bacterial versus viral infection and can swiftly identify bacterial pathogens and their resistances. We seek to answer the question: "Can such tests be used as an antibiotic guardian?" Their availability at the bedside rather than in the laboratory should best ensure that results are swiftly used to optimize patient management but will raise new challenges, not the least with respect to maintaining quality control and microbiology/infection control input. A further challenge lies in assessing the degree of trust that treating clinicians will place in these molecular diagnostic tests, particularly when early de-escalation of antibiotic therapy is indicated.

13.
Clin Microbiol Rev ; 33(2)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32102900

RESUMO

Clinical microbiology is experiencing revolutionary advances in the deployment of molecular, genome sequencing-based, and mass spectrometry-driven detection, identification, and characterization assays. Laboratory automation and the linkage of information systems for big(ger) data management, including artificial intelligence (AI) approaches, also are being introduced. The initial optimism associated with these developments has now entered a more reality-driven phase of reflection on the significant challenges, complexities, and health care benefits posed by these innovations. With this in mind, the ongoing process of clinical laboratory consolidation, covering large geographical regions, represents an opportunity for the efficient and cost-effective introduction of new laboratory technologies and improvements in translational research and development. This will further define and generate the mandatory infrastructure used in validation and implementation of newer high-throughput diagnostic approaches. Effective, structured access to large numbers of well-documented biobanked biological materials from networked laboratories will release countless opportunities for clinical and scientific infectious disease research and will generate positive health care impacts. We describe why consolidation of clinical microbiology laboratories will generate quality benefits for many, if not most, aspects of the services separate institutions already provided individually. We also define the important role of innovative and large-scale diagnostic platforms. Such platforms lend themselves particularly well to computational (AI)-driven genomics and bioinformatics applications. These and other diagnostic innovations will allow for better infectious disease detection, surveillance, and prevention with novel translational research and optimized (diagnostic) product and service development opportunities as key results.


Assuntos
Serviços de Laboratório Clínico/organização & administração , Técnicas de Laboratório Clínico/métodos , Doenças Transmissíveis/diagnóstico , Animais , Inteligência Artificial , Automação , Humanos
15.
J Orthop Res ; 37(5): 1007-1017, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667567

RESUMO

Biofilm-associated implant-related bone and joint infections are clinically important due to the extensive morbidity, cost of care and socioeconomic burden that they cause. Research in the field of biofilms has expanded in the past two decades, however, there is still an immense knowledge gap related to many clinical challenges of these biofilm-associated infections. This subject was assigned to the Biofilm Workgroup during the second International Consensus Meeting on Musculoskeletal Infection held in Philadelphia USA (ICM 2018) (https://icmphilly.com). The main objective of the Biofilm Workgroup was to prepare a consensus document based on a review of the literature, prepared responses, discussion, and vote on thirteen biofilm related questions. The Workgroup commenced discussing and refining responses prepared before the meeting on day one using Delphi methodology, followed by a tally of responses using an anonymized voting system on the second day of ICM 2018. The Working group derived consensus on information about biofilms deemed relevant to clinical practice, pertaining to: (1) surface modifications to prevent/inhibit biofilm formation; (2) therapies to prevent and treat biofilm infections; (3) polymicrobial biofilms; (4) diagnostics to detect active and dormant biofilm in patients; (5) methods to establish minimal biofilm eradication concentration for biofilm bacteria; and (6) novel anti-infectives that are effective against biofilm bacteria. It was also noted that biomedical research funding agencies and the pharmaceutical industry should recognize these areas as priorities. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Biofilmes , Doenças Musculoesqueléticas/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Humanos
18.
Nat Rev Drug Discov ; 14(8): 511-2, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26184493

RESUMO

The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies.


Assuntos
Antituberculosos/uso terapêutico , Desenho de Fármacos , Tuberculose/tratamento farmacológico , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Quimioterapia Combinada , Humanos , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos
19.
J Clin Microbiol ; 53(9): 2854-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109443

RESUMO

Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens.


Assuntos
Técnicas Bacteriológicas/métodos , Infecções por Haemophilus/diagnóstico , Haemophilus influenzae/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções Respiratórias/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Haemophilus influenzae/química , Haemophilus influenzae/genética , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA